lall 110	cket Ni	ımber:					1
	13.4	£3.27	14 2 2	1 F. F.	1 33 177		
							1

Code No.: 14268 AS N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Advanced Supplementary Examinations, Aug./Sep.-2023

Database Management Systems

(Common to CSE & AIML)
Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Describe database.	2	1	1	1,2
2.	What is physical data independence?	2	1	1	1,2
3 .	Describe the term strong entity set.	2	1	2	1,2
4.	What is referential integrity	2	1	2	1,2
5.	Let $F = \{A \to B, C \to D, D \to E\}$ be a set of functional dependencies. Find the closure of the set $\{A,C\}$.	2	1	3	1,2
6.	What is meant by NOT NULL constraint?	2	1	3	1,2
7.	Is it possible to have two clustered indexes on the same relation?	2	1	4	1,2
8.	Explain durability property of a transaction.	2	1	4	1,2
9.	Given an example of wound-die scheme.	2	1	5	1,2
10.	What is ARIES?	2	2	5	1,2
	Part-B $(5\times8 = 40 \text{ Marks})$				
11. a)	Draw the architecture of DBMS. Explain about each component.	4	2	1	1,2
b)	Explain about participation constraints in ER diagrams.	4	3	1	1,2
12. a)	Consider the following relational schema Employee (empno,name,office,age) Books(isbn,title,authors,publisher) Loan(empno, isbn,date)	4	3	2	1,2
	Write the following queries in relational algebra.				
	a. Find the names of employees who have borrowed a book Published by 1 McGraw-Hill?				
	b. Find the names of employees who have borrowed all books Published by McGraw-Hill?				
	c. Find the names of employees who have borrowed more than five different books published by McGraw-Hill?				
	d. For each publisher, find the names of employees who have borrowed?				
b)	Discuss about correlated nested queries in SQL.	4	3	2	1,2
13. a)	Consider the following relational schemes for a library database: Book (Title, Author, Catalog_no, Publisher, Year, Price) Collection (Title, Author, Catalog_no) the following are functional dependencies:	4	4	3	1,2
	a. Title Author> Catalog_no				
	b. Catalog_no> Title Author Publisher Year				
	c. Publisher Title Year> Price				
	d. Assume {Author, Title} is the key for both schemes. Apply the appropriate normal form for Book and Collection.				

	b)	Define Cartesian product in relational algebra with example.	4		2	3	1,2	7
14	. a)	Consider the following transactions with data items P and Q initialized to zero: T1: read(P); read(Q);	4		1	4	1,2	
		If P=0 then Q:=Q+1;						
		write(Q);						
		T2: read (Q);	4					
		read(P); I						
		f Q=0 then P:=P+1;						
		write (P);						
		Solve and find any non-serial interleaving of T1 and T2 for concurrent execution leads to a serializable schedule or non serializable schedule. Explain?						
ob Her	b)	Consider the transactions T1, T2, and T3 and the schedules S1 and S2 given below.	4	4	ļ.	4	1,2	
		T1: $r1(X)$; $r1(Z)$; $w1(X)$; $w1(Z)$						
		T2: r2(Y);r2(Z);w2(Z)						-
		T3: r3(Y);r3(X);w3(Y)						
		S1: r1(X);r3(Y);r3(X);r2(Y);r2(Z); w3(Y);w2(Z);r1(Z);w1(X);w1(Z)						
		S2: r1(X); r3(Y); r2(Y); r3(X); r1(Z); r2(Z); w3(Y); w1(X); w2(Z); w1(Z)						
		Analyze which one of the schedules is conflict-serializable?						
15.	a)	Briefly Describe Concurrency control execution? Illustrate with a suitable example	4	2		5	1,2	
	b)	Explain about B trees indexing concepts with an example	4	2		5	1,2	
16.	a)	Explain mapping cardinality constraints in ER model with examples.	4	2		1	1,2	
	b)	Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one- 1 to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. Calculate the minimum number of tables required to represent this situation in the relational model?	4	2		2	1,2	
17.		Answer any two of the following:						
	a)	Explain triggers with examples.	4	1		3	1,2	
	b)	Why timestamp-based concurrency control allows schedules that are not recoverable. Explain with example.	4	1		4	1,2	
	c)	Explain extendible hashing with an example.	4	2		5	1,2	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%